• Answer 05 questions only.

01. a). Express as a rational number,

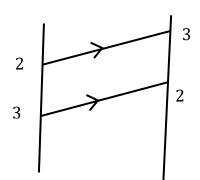
$$0.1\dot{7} + 2.\dot{1}\dot{4}$$

b). Simplify,
$$\frac{x}{y^{1/2} + x^{1/2}} + \frac{x}{y^{1/2} - x^{1/2}}$$

c). Solve for
$$x$$
,
$$\frac{\sqrt{5-x^2}}{x+1}=1$$

02. a). The arrow diagram shows \boldsymbol{a} part of mapping

$$x \rightarrow \frac{a}{x-1} + b$$



$$f: x \to \frac{a}{(x-1)} + b$$

Find,

- i). The value of \boldsymbol{a} and \boldsymbol{b}
- ii). f(0)
- iii). f(x + k)

b). Find the domain and range of the following functions.

i).
$$f: x \rightarrow \frac{1}{2} x + 3$$

ii).
$$f: x \to \frac{1}{x-2}$$

iii).
$$f: x \to \sqrt{x-4}$$

If $f: x \to 3x - 1$ and $g: x \to \frac{3}{x - 4}$ then find,

- i). $f^{-1}(-4)$ ii). $g^{-1}(3)$ iii). gf(x)
- iv). gg(x)

03. State the remainder theorem and prove it. Show that when a polynomial f(x) is divided a). by (Px - q), Where $\rho \neq 0$, the remainder is $f\left(\frac{q}{n}\right)$.

> If $f(x) = 2x^4 + ax^3 + bx + 1$, Where a and b are real constants. Given that $f\left(-\frac{1}{2}\right) = 0$

$$f(-2) = 21$$
. Find a and b

Find the two real linear factors of f(x)

b. Express in partial fractions

- i). $\frac{x+2}{(x-3)(x+1)}$
- ii). $\frac{x^3}{(x-1)^2 (x+2)}$

If \underline{a} and \underline{b} are non-zero and non-parallel vectors and $\lambda \underline{a} + \mu \underline{b} = 0$, then prove that, 04. $\lambda = 0$ and $\mu = 0$.

> Let $\underline{a} = \lambda \underline{i} + 3\underline{i}$ and $\underline{b} = 7\underline{i} + \underline{j}$ where \underline{i} and \underline{j} are unit vectors along ox and oyaxis. If \underline{a} and \underline{b} are parallel vectors, then find the value of λ .

- If the position vectors of the points \mathbf{A} and \mathbf{B} are $\underline{\mathbf{i}} 3\underline{\mathbf{j}}$ and $2\underline{\mathbf{i}} + 5\underline{\mathbf{j}}$ respectively. b). Find,
 - $|\overrightarrow{AB}|$ i).
 - the unit vector along \overrightarrow{AB} ii).

- iii). The position vector of the point, which divided AB in the ratio 1:2 internally.
- c). Define the scalar product of the vectors \boldsymbol{a} and \boldsymbol{b}

Given that two vectors \underline{a} and \underline{b} , where $a \neq 0$ and $b \neq 0$. If $(\underline{a} + \underline{b})$ and $(\underline{a} - \underline{b})$ are perpendicular then show that $|\underline{a}| = |\underline{b}|$

05. Prove the following identities.

a).
$$\frac{Sin A + Sin 3A}{Cos A + Cos 3A} = tan 2A$$

b).
$$Cos^4 A + Sin^4 A = 1 - \frac{1}{2} Sin^2 2A$$

c).
$$Cos(A + B) + Sin(A - B) = 2 Sin(45 + A).Cos(45^{\circ} + B)$$

d). Sec
$$A = \tan A \cdot \tan \frac{A}{2} + 1$$

06. a). Show that If $Sin \theta = -\frac{1}{3}$ and $\pi < \theta < 3 \frac{\pi}{2}$

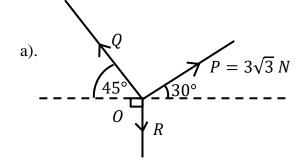
then
$$Sin\ 2\theta = \frac{4\sqrt{2}}{9}$$
 and $\tan 2\theta = \frac{4\sqrt{2}}{7}$

b). If **ABC** is a triangle, show that

$$\cos A + \cos B - \cos C = -1 + 4 \cos^{A}/2 \cdot \cos^{B}/2 \sin^{C}/2$$

c). Find the general solution of the following equation $\sqrt{3}$ Sin $x - \cos x = \sqrt{2}$.

07.



Three coplanar P, Q and R act at O and the system is in equilibrium. Find the values of Q and R.

- b). The resultant of P and Q is R. If P is reversed and Q remaining the same, then the resultant is R^1 . If R and R^1 are perpendicular, then show that, P = Q.
- c). The resultant of two forces F and 2F is perpendicular to the force F. Find the angle between the two forces and the magnitude of the resultant.

